For example,Бобцов

PROCESS-ORIENTED SYNTHESIS OF SUCCESSIVE APPROXIMATION ANALOG-TO-DIGITAL CONVERTERS FOR INTEGRATED CIRCUITS

Annotation

Subject of Research. High-resolution successive approximation analog-to-digital converters include a digital-to-analog converter with multiple capacitor arrays and have significant nonlinearity. Existing methods for nonlinearity reducing are aimed primarilyat nonlinearity lowering that arises in the digital-to-analog converter, which is a part of successive approximation analog-to- digital converter. These methods are not complex and are aimed only at reducing the impact of one or several factors that cause the nonlinearity of the digital-to-analog converter. In addition, the known approaches are applied only at the stage of topology development, that leads to significant time costs in the case of redesign when it is impossible to achieve the required accuracy of the analog-to-digital converter. Based on the above, we can assert the relevance of the development of process-oriented synthesis method for analog-to-digital converters reducing the transformation nonlinearity by taking into account the manufacturing technology at the early design stages. Method. A method of process-oriented synthesis for analog-to-digital converters is proposed providing analog-to-digital converter nonlinearity reducing. Main Results. As compared with the known methods, the method takes into account the peculiarities of the technological process at the early stage of device design. The method was used to design 18-bit analog-to-digital converter on 350 nm CMOS technology. Practical Relevance. The proposed method can be used for high-resolution analog-to-digital converter design on different CMOS technologies.

Keywords

Articles in current issue